The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (Tc). However, the absence of hole pockets near the Fermi level of the iron-selenide (FeSe) derived high-Tc superconductors raises a fundamental question of whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-Tc phase induced by pressure in bulk FeSe from magnetotransport measurements and first-principles calculations. With increasing pressure, the low-Tc superconducting phase transforms into the high-Tc phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in contrast to other FeSe-derived high-Tc systems. Moreover, the Hall coefficient is enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-Tc phase. These results in FeSe highlight similarities with high-Tc phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.